
THE NEXT TRANSDUCER GENERATION

ADJUSTABLE HIGH-ACCURACY HEAVY-CURRENT SENSORS

SINEAX DM5S/DM5F

Heavy-current sensor for grid monitoring.

SINEAX DM5S and SINEAX DM5F are freeprogrammable universal measurement devices for heavy-current systems: Classical high-accuracy transducers, suited for monitoring tasks and retrofit applications in energy distribution and industry. The devices can be adapted fast and easily to the measurement task by means of the CB-Manager software – even if there is no power supply available. Depending on the device version measured quantities can be mapped proportionally to analog DC current outputs or to Modbus.

DYNAMIC

Response times starting at 15ms (for DM5F) Automatic scaling of measuring inputs possible Uninterrupted measurement of input variables

ACCURATE

0.15% (U,I) and 0.2% (P,Q,S) Meter accuracy for active energy 0.5S (DM5S only) Adjustable meter resolution

FLEXIBLE

Scalable hardware approach (you only pay for what you need) Device function completely programmable Combinable Modbus image for optimised data retrieval

USER-FRIENDLY

Little space required in the control cabinet Programmable also without auxiliary energy Independently tested quality (UL listed)

DM5S/DM5F

The measurement is done uninterrupted in all four quadrants and can be adapted optimally to the system to be monitored. Both the average time of the measurement and the expected maximum signal level can be configured.

Commissioning is very easy and is supported by means of service functions, such as nameplate printing, connection check, measurement acquisition as well as simulation and trimming of the analog outputs.

GERÄTE-AUSFÜHRUNG	SINEAX DM5S	SINEAX DM5F
Measurement time, programmable	41024 cycles	1/2, 1/2 (1), 2,4, 8 cycles
Fastest response time (at 50Hz)	85165 ms	1525 ms
Energy metering	max. 32 meters	not supported
Auto-scaling V/I inputs	supported	not supported

SYSTEM STATE MONITORING IN CLASS 0.2

These instantaneous values will be calculated in regular configurable intervals and provided to analog outputs and Modbus interface.

DESCRIPTION	14	2L	3G	3U	3A	4U	40	DESCRIPTION	14	2L	3G	3U	3A	4U
System voltage	Yes	Yes	-	-	-	-	-	System frequency	Yes	Yes	Yes	Yes	Yes	Yes
Voltage L1-N	-	Yes	-	-	-	Yes	Yes	Active power factor of the system,	Yes	Yes	Yes	Yes	Yes	Yes
Voltage L2-N	-	Yes	-	-	-	Yes	Yes	PF=P / S	100		100	100	100	
Voltage L3-N	-	-	-	-	-	Yes	Yes	Active power factor in phase L1	-	Yes	-	-	-	Yes
Voltage L1-L2	-	_	Yes	Yes	Yes	Yes	Yes	Active power factor in phase L2	-	Yes	-	-	-	Yes
Voltage L2-L3	_	_	Yes	Yes	Yes	Yes	Yes	Active power factor in phase L3	-	-	-	-	-	Yes
Voltage L3-L1	_	_	Yes	Yes	Yes	Yes	Yes	Reactive power factor of the system, $QF=Q/S$	Yes	Yes	Yes	Yes	Yes	Yes
Zero displacement voltage	-	—	-	-	-	Yes	Yes	Reactive power factor in phase L1	_	Yes	_	_	_	Yes
System current	Yes	-	Yes	-	-	-	-	Reactive power factor in phase L2	_	Yes	_	_	_	Yes
Current in phase L1	-	Yes	-	Yes	Yes	Yes	Yes	Reactive power factor in phase L3	_	_	_	_	_	Yes
Current in phase L2	-	Yes	-	Yes	Yes	Yes	Yes	LF factor of the system,	Yes	Yes	Yes	Yes	Yes	Yes
Current in phase L3	-	-	-	Yes	Yes	Yes	Yes	$sign(Q) \cdot (1 - abs(PF))$	165	162	162	162	162	162
Neutral current (calculated)	-	Yes	-	_	-	Yes	Yes	LF factor in phase L1	-	Yes	-	-	-	Yes
Active power of the system	Yes	LF factor in phase L2	-	Yes	-	-	-	Yes						
Active power in phase L1	_	Yes	_	_	_	Yes	Yes	LF factor in phase L3	_	-	-	-	-	Yes
Active power in phase L2	_	Yes	_	_	_	Yes	Yes	Average voltage	Yes	Yes	Yes	Yes	Yes	Yes
Active power in phase L3	_	_	_	_	_	Yes	Yes	Average current	Yes	Yes	Yes	Yes	Yes	Yes
Reactive power of the system	Yes	Average current with sign of P	Yes	Yes	Yes	Yes	Yes	Yes						
Reactive power in phase L1	_	Yes	_	_	_	Yes	Yes	Bimetal current of the system	Yes	-	Yes	_	_	-
Reactive power in phase L2	_	Yes	_	_	_	Yes	Yes	Bimetal current in phase L1	_	Yes	-	Yes	Yes	Yes
Reactive power in phase L3	_	_	_	_	_	Yes	Yes	Bimetal current in phase L2	_	Yes	-	Yes	Yes	Yes
Apparent power of the system	Yes	Bimetal current in phase L3	— \/aa	-	— Vaa	Yes	Yes	Yes						
Apparent power in phase L1	_	Yes	_	_	_	Yes	Yes	Slave pointer of bimetal current of the system Slave pointer of bimetal current in phase L1	Yes	— Vaa	Yes	— Vaa	— Vaa	— Vaa
Apparent power in phase L2	_	Yes	_	_	_	Yes	Yes	Slave pointer of bimetal current in phase L1	-	Yes Yes	-	Yes	Yes Yes	Yes Yes
Apparent power in phase L2		163				Yes	Yes	Slave pointer of bimetal current in phase L2	_	ies	-	Yes Yes	Yes	Yes
Apparent power in priase LS	_	_	_			162	162	Slave pointer or bimetal current in phase L3	_	_	_	162	162	Tes

14 = Single phase system or 4-wire balanced or 3-wire unbalanced phase shift

2L = two-phase system (split phase)

3G = 3-wire balanced

3U = 3-wire unbalanced

3A = 3-wire unbalanced in Aron connection

40 Yes _ Yes Yes Yes

Yes Yes Yes

4 U = 4 -wire unbalanced

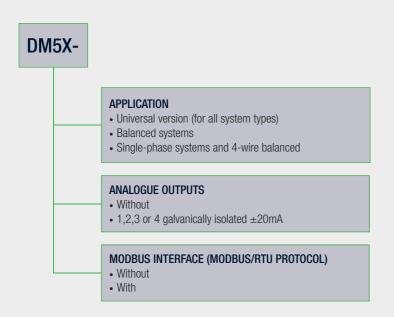
40 = 4-wire unbalanced in Open-Y connection

DM5S: ENERGY CONSUMPTION MONITORING IN CLASS 0.5S

The DM5S supports up to 32 energy meters. To each of these meters a base measurement quantity and a tariff can be assigned. The present tariff is set via Modbus.

For application with short measurement times, e.g. energy consumption for a single working day or production lot, the resolution can be adapted.

Thanks to uninterrupted measurement and automatic range detection a high accuracy is achieved.

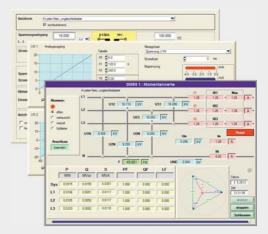

- Up to 32 meters
- Up to 16 tariffs (control via Modbus)
- Free selectable base quantity (P, Q, S, I)
- High accuracy 0.5S
- Uninterrupted measurement
- Free selectable meter resolution

FREE DEVICE ASSEMBLY

For parameterization the DM5 is equipped with a USB interface as a standard.

The measurement output can be performed via analog outputs and / or a Modbus interface.

For the designation of the device the marking of the Power LED can be overwritten with the device description. The associated label can then be printed.



PARAMETERIZATION, SERVICE AND MEASUREMENT ACQUISITION

The CB-Manager software provides the following functions to the user:

- Full parameterization of DM5S/DM5F
- Locally: Via USB interface (even without power supply)
- Remote: Via Modbus interface
- OFFLINE: No device connected
- Data label printing of present parameterization
- Free selectable LED marking
- · Acquisition and recording of measured quantities
- Check of proper device connection
- Archiving of configuration and measurement files
- · Setting or resetting of meter contents
- · Simulation and trimming of analog outputs
- · Comprehensive parameterization help

A security system can be activated to restrict the access to device data.

TECHNICAL DATA

INPUTS

Nominal current: Maximum: Consumption: Overload capability:

Nominal voltage: Maximum: Consumption: Impedance: Overload capability:

Nominal frequency: Measurement TRMS:

TYPES OF CONNECTION

via screw terminals 6 mm² adjustable 1...5 A 7.5 A (sinusoidal) \leq I2 x 0.01 Ω per phase 10 A continuous 100 A, 10 x 1 s, interval 100 s 57.7...400 V_{LN}, 100...693 V_{LL} 480 V_{LN}, 832 V_{LL} (sinusoidal) \leq U2 / 1.54 M Ω per phase 1.54 M Ω per phase 480 V_{LN}, 832 V_{LL} continuous 600 V_{LN}, 1040 V_{LL}, 10 x 10 s, interval 10 s 800 V_{LN}, 1386 VLL, 10 x 1 s, interval 10 s 45...50 / 60 ...65 Hz

up to 31st harmonic

via screw terminals 6 mm²

24...230 V DC ±15%

 $\leq 10 \text{ VA}$

100...230 V AC ±15%, 50...400 Hz

Single phase Split phase (2 phase system) 3-wire, balanced load 3-wire, balanced load, phase shift (DM5S only) 3-wire, unbalanced load 3-wire, unbalanced load, Aron connection 4-wire, balanced load 4-wire, unbalanced load 4-wire, unbalanced load, Open-Y

POWER SUPPLY

Nominal voltage:

Consumption:

ANALOG OUTPUTS

Linearization: Range: Uncertainty: Response time (50Hz):

Burden: Burden influence: Residual ripple:

MODBUS/RTU

Number of participants:

Physics:

Baud rate:

Linear or kinked \pm 20 mA (24 mA max.), bipolar \pm 0.1% (included in basic accuracy) DM5S: 85...165ms (for 4 cycles measurement) DM5F: 15...25ms (for ½ cycle measurement) \leq 500 Ω (max. 10 V / 20 mA) \leq 0.1% \leq 0.2%

via plug-in terminals 2.5 mm², galvanically isolated

via plug-in terminals 2.5 mm² RS-485, max. 1200 m (4000 ft) 2.4 up to 115.2 kBaud \leq 32

CONFIGURATION INTERFACE USB

 Physics:
 USB, max. 3 m

 Connection:
 Socket USB-B

 Device class:
 Human interface device (HID)

MEASUREMENT UNCERTAINTY

Ambient 23°C \pm 1K, sinusoidal, PF=1,
Frequency 5060 Hz, burden 250 Ω ,
Measurement over 8 cycles (DM5S), 1 cycle (DM5F)
± 0.15% FSU / FSI ^{1) 2)}
± 0.2% (FSU x FSI) ²⁾
± 0.1° ²⁾
± 0.01 Hz
Class 0.5S, EN 62 053-22 (DM5S only)
Class 2, EN 62 053-23 (DM5S only)

¹⁾ FSU / FSI – Configured maximum value of voltage / current inputs

²⁾ Additional uncertainty if neutral wire not connected (3-wire connections)

- Voltage, power: 0.1% of measurement value; Load factor: 0.1°
- Energy: Voltage influence x 2, angle uncertainty x 2

SAFETY

 Current inputs are galvanically isolated from each other.

 Protection class:
 II (protective insulation, voltage inputs via protective impedance)

 Pollution degree:
 2

 Protection rating:
 IP30 (housing), IP20 (terminals)

 Overvoltage category:
 CAT III up to 600V

-25 up to +70 °C

II (acc. EN 60 688)

≤ 2000m max.

< 95% no condensation

AMBIENT CONDITIONS, GENERAL INFORMATION

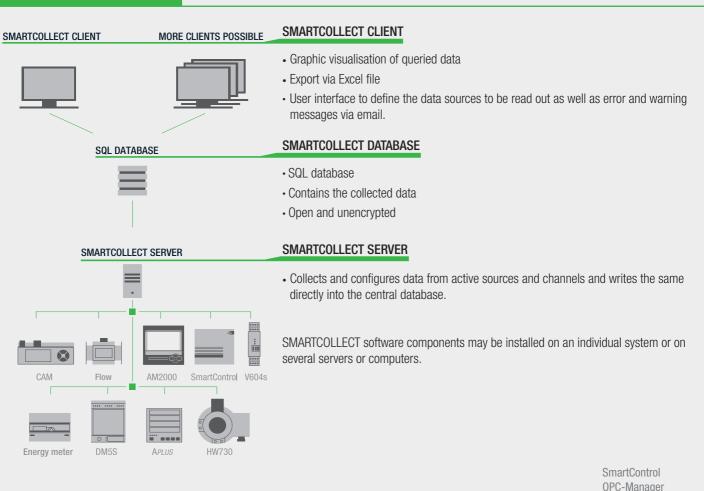
Operating temperature:--Storage temperature:--Temperature influence:0Long term drift:0Usage group:IIRelative humidity:<</td>Altitude:<</td>Device to be used indoor only!

MECHANICAL ATTRIBUTES

Dimensions (H x B x D):110 x 70 >Housing material:PolycarborWeight:500 gFlammability class:V-0 acc. Upon drippil

110 x 70 x 70mm Polycarbonat 500 g V-0 acc. UL94, self-extinguishing, non dripping, free of halogen

-20 up to 22 up to 24 up to +55°C

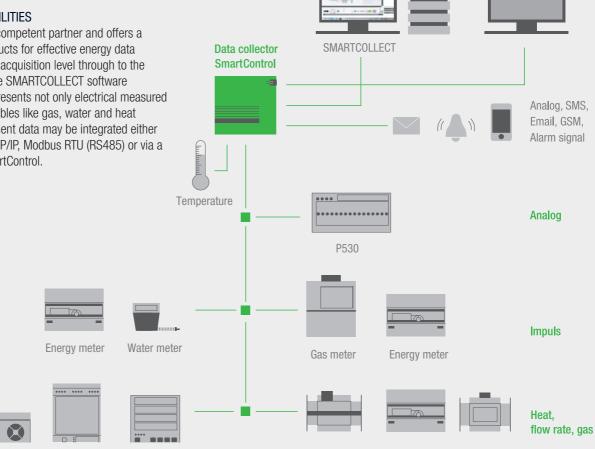

0.5 x measurement uncertainty per 10 K

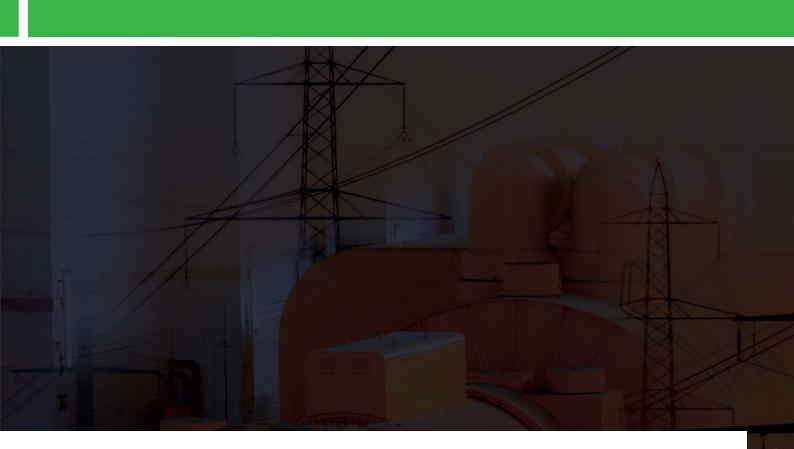
0.5 x measurement uncertainty per year

ORDER CODE

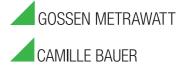
	ax DM5S , programmable, up to 4 Analog Outputs, USB, BUS/RTU, METERS	
	AX DM5F , PROGRAMMABLE, 1/2 CYCLE MEASUREMENT, UP TO 4 DG OUTPUTS, USB, MODBUS/RTU	DM5X-
1.	BASIC DEVICE	
	Without display, for rail mounting	0
2.	APPLICATION	
	Universal version for all applications (3U,3I)	1
	Single phase, 3/4-wire balanced load (3U,1I)	2
_	Single phase or 4-wire balanced load (1U,1I)	3
3.	NOMINAL FREQUENCY RANGE	
	45 <u>50/60</u> 65 Hz	1
4.	POWER SUPPLY	
_	Nominal voltage 24230 V DC, 100230 V AC	1
5.	BUS CONNECTION	0
	Without	0
-	RS-485 (Modbus/RTU protocol)	1
6.	OUTPUTS	
	Without	0
	1 analog output, bipolar ±20mA	1
	2 analog outputs, bipolar ±20mA	2
	3 analog outputs, bipolar ±20mA	3
_	4 analog outputs, bipolar ±20mA	4
7.	TEST CERTIFICATE	0
	Without test certificate	0
	Test certificate in German	D
	Test certificate in English	E
8.	CONFIGURATION	
	Basic configuration	0

SMARTCOLLECT




CONNECTION POSSIBILITIES

M-Bus


Modbus

Camille Bauer is your competent partner and offers a wide spectrum of products for effective energy data management from the acquisition level through to the management level. The SMARTCOLLECT software acquires, stores and presents not only electrical measured variables but also variables like gas, water and heat quantities. The instrument data may be integrated either directly via Ethernet TCP/IP, Modbus RTU (RS485) or via a data collector like SmartControl.

GMC INSTRUMENTS

Camille Bauer Metrawatt AG Aargauerstrasse 7 • 5610 Wohlen • Switzerland TEL +41 56 618 21 11 • FAX +41 56 618 21 21

www.camillebauer.com info@cbmag.com

